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LONG-TERM GOALS 
 
Year 2 of Phase 1 “Bayesian Hierarchical Models (BHM) to Augment the Mediterranean Forecast 
System ( MFS)” ended in May 2007.  Long-term goals for Phase I included: a) development of an 
ensemble ocean forecast methodology based on a surface wind BHM (MFS-Wind-BHM) in data 
assimilation and forecast steps of the MFS; and b) development of a BHM for time-dependent 
background error covariance evolution (MFS-Error-BHM) in the MFS data assimilation system . 
 
Phase II of the project was initiated in June 2007.  Long term goals for the second phase include the 
development of a BHM to guide ocean model super-ensemble experiments, in both multi-model and 
the multi-parameter experimental designs.  The MFS ocean forecast model will be modified for multi-
parameter super-ensemble experiments, and MFS will be joined by a Mediterranean Sea 
implementation of the Regional Ocean Modeling System (MedROMS: http://www.med-roms.org) in 
multi-model super-ensemble experiments. 
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OBJECTIVES 
 
Research objectives for the completion of Phase I in the past year included: 
 
1. developing metrics to distinguish versions of the MFS-Wind-BHM that differed in the level of 

explicit physics in the prior distribution models; 
 
2. documenting the versions and distinctions of MFS-Wind-BHM, with a goal to identify the model 

version to be implemented in MFS operations; 
 
3. developing the MFS-Error-BHM for testing in the MFS research ocean model; and 
 
4. drafting manuscripts to document MFS-Wind-BHM and MFS-Error-BHM developments. 
 
Research objectives in the organization of Phase II include: 
 
1. run-matrix design for multi-parameter super-ensemble experiments in MFS; and 
 
2. Mediterranean forecast model development plans for MedROMS; 
 
APPROACH 
 
Probability models, using the Bayesian Hierarchical Model (BHM) formalism, are being adapted to 
practical ocean forecast issues in the Mediterranean Forecast System (MFS).  The first two-year 
project explored means of generating MFS ensemble initial conditions and forecasts from realizations 
of the surface wind forcing.  Also, a general method was developed to introduce time-dependence in 
background error covariance specifications for optimal interpolation data assimilation models.  The 
BHM formalism will be extended to Super-Ensemble ocean forecast issues in the Phase II of the 
project (succeeding two years).  
 
WORK COMPLETED 
 
MFS-Wind-BHM 
 
Four related versions of MFS-Wind-BHM were developed as we explored issues of explicit vs. 
implicit physics in models for the prior distribution, and the necessity of a fine-scale spectral constraint 
(Table 1).  In order to evaluate and compare these models, we developed a set of 4 metrics, including: 
1) examining posterior distributions of the random coefficients that lead each term in the dynamical 
model for the prior distribution (i.e. the process model stage); 2) comparing sea-level pressure (SLP) 
posterior mean fields with ECMWF analyses for snapshots during the forecast period; 3) examining 
kinetic energy vs. wavenumber (KE vs. k) spectra for zonally oriented spatial series that overlap cross-
swath lines from the QuikSCAT data and zonal lines from the ECMWF analyses; and 4) observing the 
spread generated in ocean forecast model initial fields forced (during the data assimilation stage) by 
realizations from MFS-Wind-BHM posterior distribution.  
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Table 1. Versions v5 – v8 of MFS-Wind-BHM distinguished by the forms of process 
 models for the prior distribution.  The v5 model is very similar to the model developed 

 by Royle et al. (1998).  The v6 model includes explicit terms in the process model 
 for time-dependent terms that arise from the Rayleigh Friction Model equations.   

Models v7 and v8 are the counterparts of v6 and v5, respectively, and they include a small- 
scale nested wavelet basis set to enforce spectral slope (as developed by Wikle et al. 2001). 

 
MFS-Wind-BHM version Explicit time-dependent terms Wavelets 

v5 no no 
v6 yes no 
v7 yes yes 
v8 no yes 

 
 
Examples of the first three of these metrics for the v7 MFS-Wind-BHM are provided in Figures 1-3 
below.  Sample initial condition spreads were provided for sea-surface height and sea-surface 
temperature in the annual report from last year. 
 
 

 
 

Figure 1.  Posterior distributions for random coefficients in the explicit time-dependence 
/wavelet model (v7).  Row 1 contains the coefficients for the u equation.  The coefficient 

 θ
l2

 multiplies the geostrophic term; and θ 
l3

 multiplies the ageostrophic term (i.e. the 

 down-gradient, pressure gradient term).  These terms dominate the momentum balance for u.   
 A similar balance pertains for the v equation in row 2.  Magnitudes for the coefficients  

leading explicit time dependent terms are not as large as the geostrophic and  
ageostrophic coefficients.  The third row depicts posterior variance estimates for u, v, and SLP.   

The θ
l2

 values for each Gibbs iteration are shown in the lower right panel. 
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Figure 2.  Sea-level pressure (SLP) comparison ECMWF analysis (top) vs.  

MFS-Wind-BHM posterior mean (bottom) for a snapshot during the forecast period.  
The ECMWF analysis field does not influence the BHM during the forecast period.   

While large-scale features are well-reproduced, the details of the SLP field in the  
vicinity of the low pressure center over western Italy are not similar. 
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Figure 3. Kinetic energy vs. wavenumber spectra for zonal wind spatial series from zonal 

 lines in the Mediterranean Sea for the analysis period 25 January – 7 February 2005.   
Green spectra are for QuikSCAT data (solid line) and the ECMWF analyses (dashed line).  

 A reference curve representing a k -2 power law is indicated by the dashed black line,  
closely matching the slope for the QuikSCAT data.  The average spectrum for 10 realization 
s from the posterior distribution for MFS-Wind-BHM is the solid black (bold) line, and the  
posterior mean spectrum is drawn in solid red (bold).  The spectral spread computed from  

10 different estimates of the posterior mean is indicated in vertical red lines, the spread in the  
10 realizations from the posterior distribution (smaller range) is indicated by vertical black lines.  

The black and red spectra are sufficiently close to the QuikSCAT spectrum for this period. 
 
 
The v7 and v8 models are being considered for operational implementation in MFS.   Nested wavelet 
basis functions are required to enforce high-wavenumber spectral properties that are a resilient feature 
of the QuikSCAT data, missing entirely from numerical weather prediction winds.  Calculations are 
underway now to enable longer term (i.e. several year) spectral comparisons with QuikSCAT.  The v7 
model SLP comparison (Fig. 2) is not sufficient to select this model outright, so v8 is being considered. 
Manuscripts describing details of MFS-Wind-BHM development (Milliff et al, 2007), and impacts on 
the MFS forecasts (Bonazzi et al, 2007) are in preparation. 
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MFS-Error-BHM 
 
Two forms of data comprise data stage distributions (likelihoods) in MFS-Error-BHM.  They are: 1)  
the observation/forecast misfits, d, obtained principally from ARGO float profiles; and 2) the forecast 
difference with  respect to a long-term average forecast for the same year-day (so-called anomalies, q).  
The misfits are given by d = Hxf  - xARGO, where H is the observation operator that moves the model 
forecast xf to the ARGO location for each observation time.  The anomalies are given by q = xf – xavg.    
 
The data stage distributions are combined with a process model (prior) for the time-dependent error 
process, e, as described in the annual report from last year.  Depth vs. time profiles of the mean of the 
posterior distribution for e are shown in Fig 4. for one of 13 Mediterranean sub-regions (Gulf of Lions) 
treated in MFS.  The error process in temperature is concentrated above the thermocline, and exhibits a 
seasonal signal.  The error process for salinity also exhibits some seasonality.  It is also concentrated in 
the upper ocean, but there are signals of salinity error at greater depths as well. 
 

 
Figure 4. Depth vs. time profiles of the mean of the posterior distributions for time-dependent  

error processes, e, from MFS-Error-BHM.  Temperature error process profile time series for one 
 of 13 sub-regions is shown the the lefthand panel, and salinity error profiles are shown in 

 the righthand panel.  The MFS-Error-BHM output shown here is from a run of the  model 
 that does not standardize the misfit and anomaly error in data stage distributions, and 

 prior variances on parameters of the error process model (prior) are vague.  
 
Background error covariance matrix structures for two snapshots during the MFS forecast period are 
shown in Fig. 5.  Uncertainty in the background error covariance magnitude for each snapshot is 
quantified by the second moment of the posterior distribution; represented in Fig 5 as the background 
error covariance standard deviation (righthand panels). 
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Figure 5. Contour plots of the MFS background error covariance matrix, B, structures at  
two forecast times (left panels) demonstrating temporal evolution.  Rows and columns of B  

are comprised of temperature at all levels and salinity at all levels, so that the upper right block 
 is the T,T covariance, the lower left is the S,S covariance, and the off diagonal blocks are 
 T,S covariances.  The panels at right depict the spread in the error covariance estimates  
(i.e. the second mode of the posterior distribution for the background error covariance) 

 
 
MFS-SuperEnsemble-BHM 
 
An all-hands meeting was held at NWRA/CoRA in August 2007 to: 1) decide final calculations in the 
MFS-Wind-BHM and MFS-Error-BHM models as described above; and 2) design experiments for 
multi-parameter and multi-model applications of MFS-SuperEnsemble-BHM.  Professor Di Lorenzo 
has joined the PI team with responsiblities to direct the development of a second Mediterranean Sea 
ocean forecast system in MedROMS.  While MedROMS development is underway at Georgia Tech, 
Dr. Paolo Oddo (INGV, Bologna) will begin multi-parameter studies in the MFS research ocean model 
(NEMO). 
 
The overarching  super ensemble methodology,  for the multi-parameter and mulit-model experiments, 
is taken from Berliner and Kim (2007).  In this formalism, model integrations for the same target 
process and forecast period are each used as separate data stages.  Observed data can also be combined 
with the data stage components from the model integrations. A process model  is developed from first 
principles; ideally independent of numerical model results. The identification of appropriate process 
models forms a critical challenge in this research. 
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Basin-wide and sub-regional upper ocean salinity has been chosen as the target process for  the mulit-
parameter experiments in MFS-NEMO.  A time-period coinciding with known Levantine Intermediate 
Water (LIW) formation will be selected for the initial implementations.  Issues remaining to be 
addressed include: dimension reduction (i.e. efficient derivation of target processes and summary 
fields; identification of specific model bias terms; possible time-dependence in model bias; and the 
formulation of the process model.  Candidate physical processes to be varied in creating the ensemble 
of  MFS-NEMO multi-parameter integrations include: horizontal mixing (momentum and/or tracers); 
vertical mixing (momentum and/or tracers); etc.  Table 2 outlines the number of integrations to be 
considered in a sample multi-parameter experimental design wherein only the vertical mixing of 
momentum is varied, and a 10-member ensemble is considered for the MFS-NEMO model only. 
A single (perhaps existing) integration in the operational model will be used in this scenario. 
 
 

Table 2. Sample experimental design for MFS-SuperEnsemble-BHM multi-parameter 
 experiments, using the research (NEMO) and operational ocean models from MFS.   

In this sample experiment, the vertical mixing parameterizations for momentum are varied 
 between the K-Profile Parameterization (KPP) and a Pacanowski-Philander parameterization 

 that are both implemented in the MFS models. 
 
Model and Data Assimilation 
Systems 

MFS research model (NEMO) 
MFS operational model 

2 

Physical process Vertical mixing 1 
Parameterizations (i.e. 
packages) 

KPP 
Pacanowski-Philander 

2 

Replicates 10-member ensemble MFS-NEMO  
1 existing calculation MFS-Ops  

20 
1 
total of 21 integrations 

 
 
Similar considerations apply in the multi-model case, and Table 3 demonstrates a similar hypothetical 
experimental design. However, the bias terms for the MedROMS model will be harder to determine 
since a long forecast record does not exist for that model as it does for MFS.  MedROMS forecast 
model development will depend on cooperation and lessons learned from MFS. 
 
 

Table 3.  As in Table 2,  but for multi-model experiments using MFS-NEMO and MedROMS. 
 
Model and Data Assimilation 
Systems 

MFS research model (NEMO) 
MedROMS 

2 

Physical process Vertical mixing 1 
Parameterizations (i.e. 
packages) 

KPP 
Pacanowski-Philander 

2 

Replicates 10-member ensembles, both 
models 

20 
total of 40 integrations 
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RESULTS 
 
• Four versions of  MFS-Wind-BHM have been constructed and run through a test forecast period. 
 
• MFS-Error-BHM has been implemented in the Gulf of Lions sub-region of the MFS domain 
 
• logistics for multi-parameter and multi-model MFS-SuperEnsemble-BHM have been scoped. 
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